
Analysing large scale survey data
using R

Pierre Walthéry, Nadia Kennar, Rihab Dahab

Table of contents

Introduction 3

1 What is R ? 4

2 Using R: essential information 6

2.1 Download and installation . 6

2.2 Installing and setting up RStudio . 7

2.3 Interacting with R . 8

2.4 Installing and loading packages . 10

2.5 Getting help . 11

2.6 Objects . 11

3 Opening datasets in R 17

3.1 Essential information . 17

3.2 The 2017 British Social Attitudes Survey . 18

3.3 Understanding the dataset . 18

3.4 Identifying and selecting variables . 21

4 Essentials of Data Manipulation 22

4.1 Creating and transforming numerical variables 22

4.2 Categorical variables . 23

4.3 Recoding variables . 24

4.4 Missing Values . 25

4.4.1 Inspecting missing data . 25

4.4.2 Recoding missing values as NA (continuous variables) 26

4.4.3 Working with missing values . 27

4.5 Subsetting datasets . 27

5 Descriptive statistics 30

5.1 Continuous variables . 30

5.2 Bivariate association between continuous variables 32

5.3 Categorical Variables . 32

5.3.1 One way frequency tables . 33

5.3.2 Two way or more contingency table 33

1

5.4 Grouped summary statistics for continuous variables 36

6 Producing weighted estimates 38

6.1 Frequencies and contingency tables . 39

6.2 Robust inference . 40

7 Graphs and plots 42

7.1 Distributional graphs for continuous variables 42

7.2 Plotting categorical variables . 44

7.3 More advanced plots . 46

8 Statistical testing 49

8.1 Differences between means . 49

8.2 Differences in variance . 50

8.3 Significance of measures of association . 51

9 Regression analysis 53

10 Further information 59

10.1 Additional commands of interest . 59

10.2 Additional online resources . 59

11 References 60

2

Introduction

This guide provides an introduction to analysing large scale social survey dataset using R with

examples from the British Social Attitudes Survey 2020. It is aimed at two categories of users:

1. Those outside higher education, or who do not have access to one commonly used

commercial statistical software such as Stata, SPSS or SAS but who would like to conduct

their own analysis beyond what is usually published by data producers such as the Office

for National Statistics (for example statistics for specific groups of the population). This

guide provides this group of users with a range of procedures that will help them produce

straightforward and robust analyses tailored to their needs without spending unnecessary

time on learning the inner workings of R.

2. More advanced users who are already familiar with other data analysis tools but who would

like to learn how to carry out their analyses in R. The guide therefore focuses on providing

succinct examples of common operations that most users carry out in the course of their

research, including how to:

• read in and open datasets.

• do common data manipulation operations.

• produce simple descriptive statistics or tabulations.

• use survey weights.

3

1 What is R ?

R is a free, user developed, object-oriented statistical programming language that originates in

the ‘S’ and ‘S Plus’ languages developed during the 1970s and 1980s. It has a large audience

in the science and statistics communities and is increasingly used in the social sciences for

teaching and research purposes.

Anyone can install and use R without charge, and to some extent contribute to and amend

the existing program itself. R can be downloaded from the Comprehensive R Archive Network

(CRAN) website. Installation instructions as well as guides, tutorials and FAQ are available on

the CRAN website.

R is particularly favoured by users who want to develop their own statistical functions or implement

technical advances that are not yet available in commercial packages. The existence of a vast

number of user written packages (17,672 at the time of writing this guide) is one of the great

strengths of R. Users who want to contribute should be aware that in order to be part of the R

archive, a minimum set of rules need nonetheless to be followed.

Although R can perform most of the analyses available in generalist software such as Stata,

SPSS, or SAS, it has a broader potential since it can also be used for mapping, data mining

or machine learning. Being a language also means that there are often several ways to carry

out analyses in R, each one with its advantages and inconvenient. Users can also easily

produce publication quality output from R thanks to its integration with the Markdown LaTeX

document presentation system, and R graphs can also be imported into MS Word or LibreOffice

documents.

By contrast with other statistical software, the R interface is rather minimal and consist merely of

a terminal. In line with programming languages such a Python or C, R users tend to access it

via an interface, or Integrated Development Environment (IDE). This guide uses the R Studio

development environment, one of the most common IDE for R. The data used in this guide is the

British Social Attitudes Survey, 2017, Environment and Politics: Open Access Teaching Dataset,

which can be downloaded from the UK Data Service website without registration. The website

also has instructions on how to acquire and download large-scale survey datasets. Links and

further information about the other training resources available online are provided at the end of

this document.

Although R has advantages over other statistical analysis software, it also has a few downsides,

both of which are summarised below. Users should be reminded that as open-source software,

R and its packages are developed by volunteers, which makes it a very flexible and dynamic

project, but at the same time reliant on developers’ free time and goodwill.

Table 1.1: Advantages and inconvenients of R

Pros Cons

R is free and allows users to perform

almost any analysis they want.

The learning curve may be steep for users who do not

have a prior background in statistics or programming.

4

https://cran.r-project.org/
https://cran.r-project.org/
https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=8849

Pros Cons

R puts statistical analysis closer to the

reach of individual citizens rather than

specialists.

Transparency of use and programming

of the software and its routines, which

improves the peer-reviewing and

quality control of the software in many

cases.

Very flexible. Problem solving (for both advanced users and

beginners) may be time-consuming, depending on

how common the problem encountered, and may lead

to more time spent solving technical rather than

substantive issues.

Availability of a wide range of

advanced techniques not provided in

other statistical software

Many people who design R packages are, or will

become busy academics. Packages can stop being

maintained without notice.

A very large user base provides

abundant documentation, tutorials, and

web pages.

There are several (sometimes many) ways of achieving a particular result in R. This can be

confusing for novice researchers, but at the same time will allow users to tightly adjust their

programmes to their needs.

5

2 Using R: essential information

2.1 Download and installation

R can be downloaded for free from the CRAN website and run like any other Windows application.

Versions for Mac and Linux are also available. After installation, the standard and rather minimalist

R interface that appears when the programme is launched is shown below.

library(foreign)

Figure 2.1: The standard R interface

6

https://cran.r-project.org/

This interface merely allows the user to type in commands one by one in the console, and to

install packages via pull-down menus. However, this basic installation, although fully functional,

is rather minimal, not very ergonomic or user friendly. As with other statistical software, the

primary way of interacting with R for most is to write programs, even basic ones in a syntax file

(also called script file) that is saved and run whenever needed, which is not directly feasible with

the standard R GUI.

It is therefore highly recommended to use R via an Integrated Development Environment (ie

a more sophisticated user interface) such as RStudio for beginners to intermediate users or

the StatEt module for Eclipse for more advanced programmers. Both are free, available for

Windows, MacOS and Linux and offer users a large number of additional functionalities, such

as syntax highlighting, integration with Github. Given that it probably has the largest number

of users RStudio will be used to demonstrate examplkes of R syntax in the remainder of this

document. In order for this guide to remain as universal as possible, we will not rely on the

advanced features of RStudio, instead using it merely as an interface to the R engine.

2.2 Installing and setting up RStudio

RStudio needs to be installed separately from R. The program can be downloaded from the

RStudio website. The site will automatically generate a link to the version most compatible

with the computer used to access it. Once downloaded double click on the file and follow the

installation instructions.

By default, the R Studio interface consists of four main panels, respectively known as the script

editor (top left panel), the console (bottom left panel), the Environment (top right panel) and the

File/Directory/Help (bottom right panel).

Figure 2.2: The R Studio default interface

As such a complex interface can be visually overwhelming for some users and is not required

for the purpose of this guide, we will minimise the Global Environment and Files/Directory/Help

7

https://www.rstudio.com/products/rstudio/download/
https://www.eclipse.org/statet/news/
https://www.eclipse.org/downloads/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

panels by clicking in the center of the window and dragging right to the edge of the screen. This

way, only the script and console panels remain visible. The tiling of the panels can be customised

in Tools>Global Options>Pane Layout. For instance, Script can be moved to the bottom of the

window and Console to the top:

Figure 2.3: A customised R Studio interface

2.3 Interacting with R

As already mentioned, one can type R commands directly in the console of RStudio and/or by

typing sequences of commands in a script file.

Most R commands adopt the following syntax:

> command(parameter1, parameter2, ...)

All R commands are followed by brackets, even if there are no parameters.

In the following example we are going to set up the default working directory, that is the default

location for opening and storing files, by using the getwd() and setwd() commands. First, let us

visualise the current default working directory.

getwd()

[1] "/home/piet/Dropbox/work/UKDS/RGuide/UKDS_RGuide"

8

Let us say we would like the code from this guide to be all in a folder called ‘R_UKDS’, to be

located in ‘My Documents’. To tell R to use the folder ’R_UKDS, we can either create it from

within Windows or ask R to do it for us. So type:

For Windows:

> setwd("C:/Documents and Settings/<INSERT YOUR USERNAME HERE>/My Documents/R_UKDS")

For Mac:

> setwd("/Users/<INSERT YOUR USERNAME HERE>/Documents/R_UKDS")

For Linux:

dir.create("~/Documents/R_UKDS")

setwd("~/Documents/R_UKDS")

Typing getwd() confirms that the change has been recorded.

getwd()

[1] "/home/piet/Dropbox/work/UKDS/RGuide/UKDS_RGuide"

Notes:

• Any character string that is neither a command or the name of an object (such as a variable

name) needs to be put between inverted commas or quotation marks, otherwise it will be

interpreted as the name of an object

• see the example below about loading user-created packages;

• Even when no parameters are specified for a command, brackets are compulsory as shown

in the getwd() example above;

• R uses forward slashes rather than backslashes (unlike most other Windows applications)

to separate directories. Using backlashes will return an error message;

• Although most R commands accept a large number of options to be specified, in many

cases default values have been ‘factory set’ so that only the essential parameters need

specifying.

The output of most R commands can be either directly displayed on the screen (as in the above

example) or stored in objects that can be subsequently reused in further commands. This

object-oriented feature separates R from traditional statistical software.

For instance, typing:

> a<-getwd()

will store the output of getwd() (that is, the name of the current default directory) into an object

called ‘a’. In order to view the content of a, one can just type its name:

9

> a

Writing R scripts via R Studio {-} Most users will want to write their code in a script file,

similar to the ‘do’ file in Stata or syntax file in SPSS. R script files end with the .R suffix. To

open an existing R script in RStudio select File>Open File then the relevant script file. To create

a new script select File>New File>Open File (shortcut: Control+Shift+N) this will open a new

script window in which to type commands.

2.4 Installing and loading packages

Apart from a basic set of commands and functions, most of the tools offered by R are available

in packages that are not provided during the main installation and need to be installed and

downloaded separately from within R. For example, to install the ‘foreign’ package one need to

type:

install.packages("foreign",repos = "https://cloud.r-project.org")

Installation only needs to be done once. If the address of the package repository is not specified

via the repos option, a pull-down menu will appear, asking for one. Choosing https://cloud.r-

project.org will automatically select the closest mirror site.

Originally, Foreign enabled users to import Stata (version 12 or older) or SPSS datasets. For Stata

datasets saved under version 13 and above, the haven or readstata13 package are required.

install.packages("haven",repos = "https://cloud.r-project.org")

To use a package already installed in the local R library, the library() command is needed:

library(foreign)

Simply typing:

> library()

Will list all libraries installed on the computer that can be loaded in memory. This can be a rather

long list!

Besides a full archive of R packages, the CRAN website provides a series of manuals, including

Writing R Extensions, which describes how users can write their own packages and submit them

to CRAN.

Once a package is installed, it will be permanently stored in the local R library on the com-

puter, unless deleted it with the remove.packages() command (not advised as this can break

dependencies between packages!).

> remove.packages("name of the package")

Packages required for an analysis have to be loaded every time a new R session is started (But

not every time a syntax file is run!).

10

https://cran.r-project.org/doc/manuals/R-exts.html

2.5 Getting help

Within R, the most straightforward way to request help with a command consists of a question

mark followed by the command name, without a space in between. The standard help system in

R (unless using RStudio or Eclipse) relies on the default web browser installed on your computer

(ie Chrome, Firefox or Edge in most cases) to display pages. Typing:

> ?getwd

Is equivalent of:

help('getwd')

and will open the help page for the getwd() command in the default web browser. If you are

using RStudio or Eclipse, the help will most likely open in a new tab within the program.

This will work for any command directly available in the Base package that is loaded at startup

or in other packages loaded via the library() command. Otherwise, R will return an error

message.

Typing two question marks followed by a keyword will search all of R for the available documen-

tation for that keyword:

??foreign

An index of all commands and functions in the foreign package can be obtained by typing:

help(package='foreign')

Note: this command only works because the ‘foreign’ package was previously loaded in memory

with the library() command. More information about where to find help when using R is provided

at the end of this document.

2.6 Objects

R is an object oriented language, which means that almost any information it uses is stored as

‘objects’ (i.e. containers) that can be manipulated independently. During an R session, multiple

objects are available simultaneously (for instance datasets, but also summary tables or new

variables produced from it). Typing:

> ls()

11

will list all the objects that are currently in memory.

Objects belong to classes or types which have distinct properties. There are many classes

of objects in R. By comparison, Stata has only macros, variables and scalars that are directly

available to most users. Common object classes include factors (these are equivalent to

categorical variables), vectors (numerical variables – whether continuous or ordinal), data frames

(datasets), matrices, etc. Not all operations are possible with all objects in R. More advanced

users can also create their own object classes. Describing R objects and their properties is well

beyond the purpose of this guide and users interested should consult the online documentation

for further explanations.

To create or assign a value to an object, one uses the assignment operator (<-). For example:

> x <- 5

In this example we have assigned the value 5 to an object called x. If you type the letter x, the

value ‘5’ will be returned in your console. The object x will appear in the R environment after the

ls() command.

x <- 5

x

[1] 5

ls()

[1] "has_annotations" "x"

Deleting objects

The rm() function can be used to remove objects from the environment (session). These objects

can be variables, lists, datasets, etc. For instance, to remove the object ‘x’, or the fictitious

dataset called ‘mydata’:

rm(x)

ls()

[1] "has_annotations"

> rm(mydata)

12

https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Objects

Data frames

Among the various classes of objects one may use in R, a few are essential to understand when

analysing survey data. Their characteristics are briefly listed below;

Data frames are objects that come closest to datasets or excel sheets in traditional statistical

software. They are objects that have indexed rows and columns, both of which may have names.

Data frames columns can be seen as variables and lines or rows as observations. Each cell in

the data frame can be uniquely identified by its position. Data frames are typically the object in

which survey datasets are stored.

Let’s assume that we have a small data frame called ‘mydata’. Here are a few basic commands

to examine it:

Determining the size of a data frame: the dim() command returns the number of rows and

columns of a data frame

dim(mydata)

[1] 50 6

R tells us that our data is made of 50 rows and 6 columns, in other words of 50 observations

and 6 variables. What if I want a quick overview of the dataset?

head(mydata)

RSex skipmeal Married

1 Female NA Married/living as married

2 Female 1 Separated/divorced

3 Female NA Married/living as married

4 Male NA Never married

5 Male 1 Never married

6 Male NA Married/living as married

Poverty1 HEdQual3

1 Was not Higher educ below degree/A level

2 Was not Higher educ below degree/A level

3 Was not O level or equiv/CSE

4 Was not Higher educ below degree/A level

5 Was not No qualification

6 Was in poverty <NA>

NatFrEst

1 5

2 30

3 50

4 50

5 50

6 10

13

The head() command displays the first six lines of the dataset. Depending on the number of

variables the output of head() can become quickly overwhelming, as the size of the lines on

most screens is limited!

Obtaining the names of variables (or columns) in the dataset: This can be done using either

ls() which we already have used, or the names() commands. ls() returns the variables names,

sorted alphabetically, whereas names() returns them in their actual order in the data frame.

ls(mydata)

[1] "HEdQual3" "Married" "NatFrEst" "Poverty1"

[5] "RSex" "skipmeal"

names(mydata)

[1] "RSex" "skipmeal" "Married" "Poverty1"

[5] "HEdQual3" "NatFrEst"

We can see that in the data frame, the “RSex” column comes in fact before “Poverty1”.

Accessing variables:

Each column of a data frame, or variable, can be accessed by its name preceded by the $ sign:

mydata$NatFrEst

[1] 5 30 50 50 50 10 1 NA 5 50 60 25 30 3 25 10 80

[18] 5 50 50 40 45 2 82 60 40 10 10 40 15 30 30 2 10

[35] 75 99 70 50 10 30 1 10 85 45 70 25 40 30 10 25

attr(,"value.labels")

named numeric(0)

Alternatively, columns/variables and rows can be identified numerically by their position in the

data frame using square brackets:

dataframe[row number,column number]

Given that RSex is the first column of our dataset

mydata[,1]

[1] Female Female Female Male Male Male Male

[8] Female Male Male Male Female Female Male

[15] Female Female Female Female Female Female Male

[22] Female Female Male Male Female Female Female

[29] Female Male Female Female Female Female Male

[36] Male Female Female Male Female Male Male

[43] Female Male Female Male Female Female Female

[50] Male

Levels: Male Female

14

Returns the same output as previously. Not specifying a row or column name within the square

brackets tells R to display them all.

mydata[6,]

RSex skipmeal Married

6 Male NA Married/living as married

Poverty1 HEdQual3 NatFrEst

6 Was in poverty <NA> 10

Returns the values of all the variables for the sixth row of the data frame. Specifying both a row

and column number, will return a unique observation:

mydata[6,6]

[1] 10

which in this case is 10. Finally, more than one column or row can be displayed by concatenating

their number using the c() function:

mydata[c(6,9),c(1,6)]

RSex NatFrEst

6 Male 10

9 Male 5

The above command returns respectively the sixth and 9th observations for the sixth column.

Please note that columns names can also be used instead of their number, provided that they

are put between inverted commas:

mydata[c(6,9),c('RSex','NatFrEst')]

RSex NatFrEst

6 Male 10

9 Male 5

Returns the same result as previously. Having a data frame to hand allows us to explore other

types of objects commonly found in R. The type of a variable can be displayed by simply using

the class() function.

Numeric

Numeric objects are simple numerical vectors (ie a single or a list of numbers). Here this is the

case for NatFrEst, the estimated proportion of people making wrong benefits claims, according

to respondents to the survey.

15

class(mydata$NatFrEst)

[1] "numeric"

Character

Character objects are alphanumeric vectors, that is variables which consist of text string(s).

class(mydata$Married)

[1] "character"

Factors

An important feature of R is that categorical variables whether ordinal or polynomial are stored

in objects known as factors. The main difference between factors and traditional categorical

variables in Stata or SPSS is that they do not consist of discrete numerical values with which

value labels are associated. They should be thought of instead as a special type of character

variable with a discrete set of values, which are known as levels. In our data, Rsex (Gender of

the respondent) is such an object:

class(mydata$RSex)

[1] "factor"

Let’s further examine this factor.

levels(mydata$RSex)

[1] "Male" "Female"

returns the levels (ie the values) of RSex. Even if ‘Male’ is the first level of Rsex, and female the

second one, these do not correspond to underlying numbers in the data. Please also note that it

is possible to change the ordering of factor levels with the factor() function. It is always a good

idea to check the ordering of factor levels in a newly created variable.

mydata$RSex.New<-factor(mydata$RSex,levels = levels(mydata$RSex)[c(2,1)])

levels(mydata$RSex.New)

[1] "Female" "Male"

The above code tells R to create a new factor variable -RSex.New - whose levels are the same as

the initial RSex, but with ‘Female’ coming first, and “Male”, second. The name of the new variable

is arbitrary.

16

3 Opening datasets in R

3.1 Essential information

In principle, any dataset whether in CSV, SPSS, SAS, or Stata format can be opened by R.

There are a number of issues to consider however:

• The foreign package has been traditionally used to import SPSS and Stata datasets into

R:

• its read.spss() and write.spss() functions respectively open and write .sav files. Given

that both were developed from older versions of SPSS, it is therefore advised to check

that their outcome is as expected. In addition:

• read.spss() does not store the data in a R data frame by default and will require the option

to.data.frame=T to be specified.

• read.spss() may sometimes struggle with some numeric format and wrongly attempt to

convert them as factor, which will result in error messages. It is therefore advised to limit

the maximum number of levels that will be considered when converting factors by using

the option max.value.labels=

• read.dta() and write.dta() respectively open and write Stata files up to version 12. An

option to watch for is convert.factor=T/F which either will import Stata categorical variable

as their underlying numeric value or instead will convert them into factors, using value

labels as levels, which may be an issue for categorical variables with a large number of

levels. Users have to bear in mind that the labels will by default sorted alphabetically.

• The readstata13 package opens Stata datasets from version 13 onwards with the

read.dta13() function and offers a more comprehensive set of options. convert.factor=T/F

has the same effect as in read.dta() from foreign.

• Data frames created with either read.dta() or read.dta13() have extra information stored

as attributes, which maybe useful to retrieve. For instance:

> mydata<-read.dta("Some_Stata_dataset.dta")

> attributes(mydata)$var.labels ### Retrieves the original Stata variable labels

• Finally the haven package opens SPSS, Stata and SAS files with respectively read_spss(),

read_dta() and read_sas(). By contrast with the other two packages, it relies on ad hoc

data formats and data structures for converting labelled categorical variables and attempts

to mimic Stata’s value and variable labels. More information is available here.

In order not to overcomplicate their initial exploration of R we recommend new users to use

read.spss() or read.dta13() when importing datasets from either SPSS or Stata, rather than

the more elaborate functions available in haven.

17

https://haven.tidyverse.org/reference/read_dta.html

3.2 The 2017 British Social Attitudes Survey

For the rest of this guide, we will use the British Social Attitudes Survey, 2017, Environment

and Politics: Open Access Teaching Dataset, which can be downloaded from the UK Data

Service website. We will use the SPSS version of the dataset, which will be assumed to be saved

in a UKDS folder created inside Documents folder. C:\\Users\\Your_User_Name_Here\\Documents

We will set this as default working directory. This way, we won’t have to specify the full path of

files that we will be opening or saving.

We can finally open the file:

bsa<-read.spss(paste0(datadir,"8849spss_V1/bsa2017_open_enviropol.sav"),

to.data.frame = TRUE,

use.value.labels=TRUE,

max.value.labels = 9)

dim(bsa)

[1] 3988 25

3.3 Understanding the dataset

As previously, we can find the number of observations and variables in the dataset by typing the

following:

dim(bsa)

[1] 3988 25

We can see that there are 3,988 observations and 25 variables in the BSA dataset.

Typing:

ls()

[1] "bsa" "datadir" "has_annotations"

will show us that the object ‘bsa’ has appeared, but what if we want to get the list of all variables

in the dataset? We need to type:

ls(bsa)

[1] "actchar" "actpol" "carallow" "carenvdc"

[5] "carnod2" "carreduc" "cartaxhi" "CCBELIEV"

[9] "ChildHh" "eq_inc_quintiles" "govnosa2" "HEdQual3"

[13] "leftrigh" "libauth" "Married" "PartyId2"

[17] "plnenvt" "plnuppri" "Politics" "RAgeCat"

[21] "RClassGp" "Rsex" "Sserial" "Voted"

[25] "WtFactor"

18

https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=8849
https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=8849

If we want to get a better sense of the data, we use the head() function which will return the first

six rows.

head(bsa)

Sserial Rsex RAgeCat Married ChildHh

1 290001 Male 35-44 Married/living as married Yes

2 290002 Female 65+ Separated/divorced No

3 290003 Female 45-54 Married/living as married Yes

4 290004 Female 45-54 Married/living as married Yes

5 290005 Male 65+ Never married No

6 290006 Female 25-34 Never married Yes

HEdQual3 eq_inc_quintiles

1 O level or equiv/CSE 3rd quintile - More than £292, up to £404

2 Higher educ below degree/A level <NA>

3 Degree 3rd quintile - More than £292, up to £404

4 Degree 3rd quintile - More than £292, up to £404

5 Higher educ below degree/A level 4th quintile - More than £404, up to £577

6 Higher educ below degree/A level Lowest quintile - Up to £175

RClassGp

1 Lower supervisory & technical occupations

2 Semi-routine & routine occupations

3 Managerial & professional occups

4 Managerial & professional occups

5 Managerial & professional occups

6 Managerial & professional occups

CCBELIEV

1 I believe that climate change is taking place but not as a result of human actions

2 I believe that climate change is taking place and is, at least partly, a result of human actions

3 <NA>

4 <NA>

5 <NA>

6 <NA>

carallow carreduc carnod2 cartaxhi carenvdc plnenvt plnuppri

1 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

2 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

3 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

4 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

5 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

6 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

Politics Voted actchar actpol

1 some, Yes never never

2 ... a great deal, Yes <NA> <NA>

3 some, Yes <NA> <NA>

4 ... a great deal, Yes once in the past year once in the past year

5 not very much, Yes <NA> <NA>

6 not very much, Yes <NA> <NA>

govnosa2 PartyId2 leftrigh libauth WtFactor

1 agree Labour 1.0 4.500000 0.9380587

2 disagree Labour 1.8 4.333333 0.6844214

19

3 <NA> Labour NA NA 0.9060821

4 agree Labour 1.5 2.500000 1.3085513

5 <NA> Liberal Democrat 2.0 3.166667 0.4392823

6 neither agree nor disagree <NA> 3.0 3.000000 0.5695720

Single variables for example, Rsex (gender of respondents) may be also summarised with head(),

which returns as previously the first six observations of the gender variable, whereas typing

head(bsa$Rsex)

[1] Male Female Female Female Male Female

Levels: Male Female

Simply typing the name of a variable as in:

bsa$Rsex

will list the first 1000 observations of the variable. Other commands provide more useful

information, such as summary().

summary(bsa$Rsex)

Male Female

1806 2182

Summary is a generic function that tailors the most appropriate output to an object class. As

Rsex is a categorical variable. The output of summary() is identical to what we would have

obtained with the default tabulation fuction table():

table(bsa$Rsex)

Male Female

1806 2182

When encountering a continuous variable, summary() will compute basic descriptive statistics

(mean, median, quartiles, maximum and minimum). For example, in the case of the libertarian-

authoritarian scale libauth:

summary(bsa$libauth)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

1.167 3.000 3.500 3.511 4.000 5.000 775

20

3.4 Identifying and selecting variables

As we have already seen, variables are objects. R automatically stores variables using the

appropriate object class. Categorical variables are ‘Factors’ with ‘Levels’ as categories within

these, while continuous variables are ‘Numeric’ types of objects. The class() displays the type

of an object:.

class(bsa$Rsex)

[1] "factor"

The levels() function returns the categories of the variable.

levels(bsa$Rsex)

[1] "Male" "Female"

21

4 Essentials of Data Manipulation

In this section we will cover how to recode variables and deal with missing data.

4.1 Creating and transforming numerical variables

Let’s say we would like to transform our numerical political orientation variable: leftrigh into a

logarithmic scale. We can use the log() function which is directly available in R Base package

and simply returns the natural logarithm (base-e). We will use the assignment operator (<-) to

create a new variable called ‘leftright_log’ from the original variable

bsa$lnleftrigh_log <- log(bsa$leftrigh)

Note that if we had not specified bsa$ the command would have created a transformed variable

outside of the BSA data frame. We can now check the results with summary()

summary(cbind(bsa$lnleftrigh,bsa$leftrigh))

V1 V2

Min. :0.0000 Min. :1.00

1st Qu.:0.6931 1st Qu.:2.00

Median :0.8755 Median :2.40

Mean :0.8707 Mean :2.52

3rd Qu.:1.0986 3rd Qu.:3.00

Max. :1.6094 Max. :5.00

NA's :782 NA's :782

Please note that it is not possible to pass several variables names directly to summary(). We

need to group them first into a temporary object using cbind(). In the output V1 refers to the first

variable, lnleftrigh.

What if we - hypothetically - wanted to do the same with level of agreement to the state-

ment “People like me dont have any say about what the government does", a categorical

variable, originally ranging from 1 (Agree strongly) to 5 (Disagree strongly‘)? If we try

to repeat what we did before:

bsa$lngovnosa2 <- log(bsa$govnosa2)

Error in Math.factor(bsa$govnosa2): 'log' not meaningful for factors

22

… we get an error, due to the fact that govnosa2 was imported as a factor, and that log() can

only be applied to numeric objects.

class(bsa$govnosa2) #check to see if it is numeric

[1] "factor"

bsa$govnosa2.n <- as.numeric(bsa$govnosa2)#convert to numeric

class(bsa$govnosa2.n) #check again

[1] "numeric"

bsa$lngovnosa2 <- log(bsa$govnosa2.n) #create new log of the leftright variable

summary(cbind(bsa$lngovnosa2,bsa$govnosa2.n))

V1 V2

Min. :0.0000 Min. :1.000

1st Qu.:0.6931 1st Qu.:2.000

Median :1.0986 Median :3.000

Mean :0.8910 Mean :2.705

3rd Qu.:1.3863 3rd Qu.:4.000

Max. :1.6094 Max. :5.000

NA's :2447 NA's :2447

We can also create a completely new variable in the dataset. For instance, the following will

create test with a constant value of 1.

bsa$test <- 1

4.2 Categorical variables

We saw in Section 3 that categorical variables are objects called factors in R, with a fixed set of

possible numerical or alphanumerical values (levels) which can be accessed with the levels()

function.

levels(bsa$Married)

[1] "Married/living as married" "Separated/divorced"

[3] "Widowed" "Never married"

The number in the output does not refer to underlying numerical values to which labels are added

as with other statistical packages, but instead to the position of a given level in the list returned

by level().

23

4.3 Recoding variables

The following commands will create a new variable called Married2 where respondents are

categorised into two new categories: ‘Not partnered’ and ‘Partnered’. The “separated/divorced”

and “Never married” categories of the “Married” variable are recoded as “Not partnered”. It

is always advised to create new variables when recoding old ones so the original data is not

tampered with.

bsa$Married2 <- ifelse(bsa$Married=="Married/living as married","Partnered",bsa$Married)

bsa$Married2 <- ifelse(bsa$Married=="Widowed" |

bsa$Married=="Never married" |

bsa$Married=="Separated/divorced","Not partnered",bsa$Married2)

table(bsa$Married2)

Not partnered Partnered

1778 2209

The second and fourth categories have been renamed to ‘Not partnered’. Now we have two

levels * Partnered *Not partnered

ifelse() is a convenient tool to use when it is required to work with Base R or when the variables

have a limited number of categories. More complex cases may require a more advanced function.

The dplyr library provides a comprehensive set of data manipulation tools.

library(dplyr)

bsa<-bsa%>%

mutate(Married3=case_when(

Married == "Married/living as married" ~ "Partnered",

Married == "Separated/divorced" | Married == "Widowed" ~ "Not Partnered",

Married == "Never married" ~ "Not Partnered"

)

)

bsa$Married3<-as.factor(bsa$Married3)

summary(bsa$Married3)

Not Partnered Partnered NA's

1778 2209 1

We just created the Married3 variable, which is identical to Married2 above, but using the more

powerful syntax made available by dplyr. Let’s decompose it:

• dplyr use the pipe symbol ie %>% which enables to sequentially combine functions. We will

come back to this later in this guide.

• mutate() is the generic variable creation/alteration command, and can handle complex

combinations of conditions as well as multiple simultaneous variable creation operations.

24

• case_when() is the function that allows recoding numerical, character, or factor variables.

On the left hand side of the tilde ~ are the condition or the values that need to be matched

in the original variable , and on the right hand side, the attributed ie recoded values in the

new variable. Note that in this case, the recoded variable is by default a character object

and needs to be converted into a factor for easier manipulation.

Extra tips:

• As with any data manipulation exercise, caution is required, and it is recommended to

create new variables with the recoded value rather than alter an original variable when

handling missing values.

• The standard value attribution command in R is <-. However, = will also work in many

cases.

• Unless explicitly specified (in our case, by adding the bsa$ prefix to variable name), the

objects created are not included in the data frame from which they were computed.

4.4 Missing Values

Explicit missing values in R (ie values that R itself considers as missing) are represented as NA

for factors and numerical variables. For character variables, missing values are simply empty

strings, ie "". R has a series of functions specifically designed to handle NAs.

R has fewer safety nets than other packages for handling missing values. Most function won’t

issue warn users about whether or how many how many observations with missing values have

been dropped. On the other hand, some commands will return error messages and won’t run

when missing values are present. This is the case of mean() for example.

4.4.1 Inspecting missing data

The logical function is.na() assesses each observation in variables and identifies whether

cases are valid or missing. The result will appear as a boolean TRUE/FALSE vector for each

observation. is.na() can be combined with other functions:

• With table() in order to get the frequencies of missing values of a specific variable.

• With sum() in order to count the number of missing observations of variables or whole

datasets.

table(is.na(bsa$leftrigh))#of missing values in the leftright variable

FALSE TRUE

3206 782

sum(is.na(bsa)) # of missing values in the whole dataset

[1] 41486

25

mean(is.na(bsa$leftrigh)) #returns the proportion of NAs...

[1] 0.1960883

mean(is.na(bsa)) # returns the proportion in the dataset

[1] 0.3355712

4.4.2 Recoding missing values as NA (continuous variables)

It may sometimes be useful to recode implicit missing values (ie considered by the data producer

as missing, but not by R) of either numeric objects or factors into <NA>, in order to simplify case

selection when conducting analyses. This can either be done with Base R code or the more

advanced data manipulation functions from the dplyr package that we explored earlier.

Let’s assume for a moment that we would like to get rid of respondents aged under 25 for our

analysis. A safe way to proceed is by creating a new variable.

bsa$RAgeCat2 <- bsa$RAgeCat #duplicate variable

table(bsa$RAgeCat2)

18-24 25-34 35-44 45-54 55-59 60-64 65+

223 591 650 729 320 333 1138

bsa$RAgeCat2[bsa$RAgeCat2=="18-24"] <- NA #convert responses “18-24” to NA

table(bsa$RAgeCat2)

18-24 25-34 35-44 45-54 55-59 60-64 65+

0 591 650 729 320 333 1138

table(is.na(bsa$RAgeCat2))

FALSE TRUE

3761 227

Why is the number of missing values 227 and not 223 as the original number of respondents

aged 18-24? Because there were already 3 missing values for the RAgeCat variable.

We can also notice that although there are now no observation left in the 18-24 category, it is

still displayed by table(). This is because levels are attributes of factors and are not deleted

with observations. We can remove unused levels permanently with droplevels()

26

bsa$RAgeCat2<-droplevels(bsa$RAgeCat2)

table(bsa$RAgeCat2)

25-34 35-44 45-54 55-59 60-64 65+

591 650 729 320 333 1138

4.4.3 Working with missing values

Explicit missing values (coded as NA) can be taken care of by R’s own missing values functions.

For instance using the na.rm=T or na.rm=TRUE option will remove missing values from an analysis

(typing ?na.rm will provide more information). Below is a summary of how NAs are dealt with by

common R commands:

Table 4.1: Treatment of missing values by R commands

Command Default action Parameter

mean(), sd(),median() Includes NA (may return an error) na.rm=T

cor(),cov() Includes NA (may return an error) use=“complete.obs”

table() Excludes NA useNA = “always” to display NAs

xtabs() Excludes NA addNA = T to display NAs

lm(),glm() Excludes NA na.action=NULL

4.5 Subsetting datasets

When analysis survey data. it is often necessary to limit the scope of computation to specific

groups or subset of the data we may be interested in. There are many ways of subsetting

datasets in R. We will review the most common here.

Using Base R

Most subsetting commands involve some form of conditions whereby the characteristics of a

subsample of interest are specified. Suppose we would like to examine the interest for politics

among people aged 18-24.

We can either create an adhoc data frame:

table(bsa$Politics)

... a great deal, quite a lot, some, not very much,

739 982 1179 708

or, none at all?

379

27

bsa.young<-bsa[bsa$RAgeCat=="18-24",]

table(bsa.young$Politics)

... a great deal, quite a lot, some, not very much,

29 41 72 56

or, none at all?

25

bsa.young<-bsa[bsa$RAgeCat=="18-24",]

Or we can directly limit the extent of the analysis on the go:

table(bsa$Politics[bsa$RAgeCat=="18-24"])

... a great deal, quite a lot, some, not very much,

29 41 72 56

or, none at all?

25

In the first example it was necessary to include a comma after specg the condition. This is meant

to indicate that we want to retain all variables ie columns in the dataset. The comma is not

necessary in the second example as we are already working with a single variable.

Using dplyr*

Now suppose we want to further restrict the analysis to people identifying as Males. We could

use the same Base R syntax as above, but with more than one condition coding tends to become

cumbersome. We could instead use the more convenient syntax from the dplyr package.

Either:

bsa.young.males<-bsa%>%filter(RAgeCat=="18-24" & Rsex=="Male")

table(bsa.young.males$Politics)

... a great deal, quite a lot, some, not very much,

15 22 30 18

or, none at all?

9

Or. as before embed it as a condition within table() :

table(bsa%>%filter(RAgeCat=="18-24" & Rsex=="Male")%>%select(Politics))

Politics

... a great deal, quite a lot, some, not very much,

15 22 30 18

or, none at all?

9

28

We are now equipped with the necessary information to move to the next stage and carry out

basic analysis using R.

29

5 Descriptive statistics

library(dplyr)

library(Hmisc)

library(ggplot2)

library(haven)

library(foreign)

datadir<-"/home/piet/Dropbox/work/UKDS/rguide/data/"

bsa<-read.spss(paste0(datadir,"8849spss_V1/bsa2017_open_enviropol.sav"),

to.data.frame = TRUE,

use.value.labels=TRUE,

max.value.labels = 9)

5.1 Continuous variables

Producing descriptive statistics in R is relatively straightforward, as key functions are included

by default in the Base package. We have already seen above that the summary() command

provides essential information about a variable. For instance,

summary(bsa$leftrigh)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

1.00 2.00 2.40 2.52 3.00 5.00 782

provides information about the mean, median and quartiles of the political scale of respondents.

The describe() command from the Hmisc package provides a more detailed set of summary

statistics.

library(Hmisc)

describe(bsa$leftrigh)

bsa$leftrigh

n missing distinct Info Mean Gmd .05 .10

3206 782 30 0.993 2.52 0.8831 1.2 1.4

.25 .50 .75 .90 .95

2.0 2.4 3.0 3.6 4.0

lowest : 1 1.2 1.4 1.5 1.6 , highest: 4.4 4.6 4.75 4.8 5

30

describe() also provides the number of observations (includingmissing and unique observations),

deciles as well as the five largest and smallest values.

Commands producing single statistics are also available:

mean(bsa$leftrigh, na.rm = T)

[1] 2.519911

sd(bsa$leftrigh, na.rm = T)

[1] 0.7852958

median(bsa$leftrigh, na.rm = T)

[1] 2.4

max(bsa$leftrigh, na.rm = T)

[1] 5

min(bsa$leftrigh, na.rm = T)

[1] 1

We could combine the output from the above commands into a single line using the c() function:

c(

mean(bsa$leftrigh, na.rm = T),

sd(bsa$leftrigh, na.rm = T),

median(bsa$leftrigh, na.rm = T),

max(bsa$leftrigh, na.rm = T),

min(bsa$leftrigh, na.rm = T)

)

[1] 2.5199106 0.7852958 2.4000000 5.0000000 1.0000000

As we saw previously, the na.rm = T option prevents missing values from being taken into

account (in which case the output would have been NA, as this is the default behaviour of these

functions). Using these individual commands may come in handy, for instance when further

processing of the result is needed:

m <- mean(bsa$leftrigh, na.rm= T)

Let’s round the results to two decimal places:

31

rm <- round(m,2)

We can see the final results by typing:

rm

[1] 2.52

Note:

round(mean(bsa$leftrigh,na.rm=T),2)

[1] 2.52

would produce the same results using just one line of code .

5.2 Bivariate association between continuous variables

R provides a wide range of bivariate statistics under its base packages. The cor() and cov()

functions provide basic measures of association between two variables. For instance, in order

to measure the correlation between the leftright scale and the libertarian-authoritarian scale:

The later variable is a numeric variable that details how far someone sits on the libartrian –

authoritarian scale from 1 to 5

cor(bsa$leftrigh, bsa$libauth, use='complete.obs')

[1] 0.009625928

A correlation of 0.009 indicates an positive but very small relationship. It can be translated

to mean ’an increase in authoritarianism is associated with a marginal increase in rightwing

views.

Note: When using the cor() and cov() functions missing values are dealt with the ‘use=’ “every-

thing”, “all.obs”, “complete.obs”, “na.or.complete”, or “pairwise.complete.obs” options. See ‘?cor’

for additional information.

5.3 Categorical Variables

As with continuous variables, R offers several tools that can be used to describe the distribution

of categorical variables. One- and two-way contingency tables are the most commonly used.

32

5.3.1 One way frequency tables

There are several R commands that we can use to create frequency tables. The most common

ones table(),xtabs() or ftable() which return the frequencies of observations within each level

of a factor. For example, in order to obtain the political affiliation of BSA respondents in 2017:

table(bsa$PartyId2)

Conservative Labour Liberal Democrat Other party

1263 1479 241 193

None Green Party

515 79

As with any other R functions, the outcome of table() can be stored as an object for further

processing:

a<-table(bsa$PartyId2)

table() does not compute proportions or percentages. Proportions are obtained using the

prop.table() function which in turn does not produce percentages. It is also a good idea to

round the results for greater readability. Either:

round(100*prop.table(a),1)

Conservative Labour Liberal Democrat Other party

33.5 39.2 6.4 5.1

None Green Party

13.7 2.1

… or:

round(100*

prop.table(

table(bsa$PartyId2)

),

1)

Conservative Labour Liberal Democrat Other party

33.5 39.2 6.4 5.1

None Green Party

13.7 2.1

5.3.2 Two way or more contingency table

The simplest way to produce a two-way contingency table is to pass another variable to table():

33

table(bsa$PartyId2, bsa$Rsex)

Male Female

Conservative 627 636

Labour 644 835

Liberal Democrat 124 117

Other party 97 96

None 199 316

Green Party 31 48

However, when dealing with more than one variable it is recommended to use xtabs() instead

as it has a number of desirable functions directly available as option. The syntax is slightly

different as it relies on a formula ie a R object consisting of elements separated by a tilde ‘~’.

The variables to be tabulated are specified on the right hand side of the formula.

xtabs(~PartyId2 +Rsex,

data = bsa)

Rsex

PartyId2 Male Female

Conservative 627 636

Labour 644 835

Liberal Democrat 124 117

Other party 97 96

None 199 316

Green Party 31 48

The data= parameter does not have to be explicitly specified as simply using ´bsa’ will work.

Other useful options are:

• subset=, which allows direct specification of a subpopulation from which to derive the table;

• drop.unused.levels=T to remove empty levels (categories with zero observations) from

being displayed;

• weights~ variables on the right hand side of the formula will be treated as weights, a useful

feature for survey analysis.

As previously prop.table() is necessary in order to obtain proportions:

b<-xtabs(~PartyId2 +Rsex,bsa)

round(100*prop.table(b),1) ### Cell percentages

Rsex

PartyId2 Male Female

Conservative 16.6 16.9

Labour 17.1 22.1

Liberal Democrat 3.3 3.1

Other party 2.6 2.5

None 5.3 8.4

Green Party 0.8 1.3

34

The largest group in the sample (22.1%) is made of labour-voting females, the smallest of

green-voting males.

round(100*prop.table(b,1),1) ### Option 1 for row percentages

Rsex

PartyId2 Male Female

Conservative 49.6 50.4

Labour 43.5 56.5

Liberal Democrat 51.5 48.5

Other party 50.3 49.7

None 38.6 61.4

Green Party 39.2 60.8

Conservative voters are more or less evenly split between men and women, whereas Labour

and Green voters are more likely to be women.

round(100*prop.table(b,2),1) ### Option 2 for column percentages

Rsex

PartyId2 Male Female

Conservative 36.4 31.1

Labour 37.4 40.8

Liberal Democrat 7.2 5.7

Other party 5.6 4.7

None 11.6 15.4

Green Party 1.8 2.3

Similar proportions of men voted Conservative and Labour (36-37%), whereas women were

clearly more likely to vote Labour.

For some reason, there is not a straightforward way to obtain percentages in three-way contin-

gency tables with either xtabs() or table(). This is where ftable() comes handy.

round(100*prop.table(

ftable(RAgeCat~PartyId2 +Rsex,data=bsa)

,1),1) ### Option 2 for column percentages

RAgeCat 18-24 25-34 35-44 45-54 55-59 60-64 65+

PartyId2 Rsex

Conservative Male 3.0 7.8 13.9 15.0 8.6 9.3 42.4

Female 2.7 7.1 8.8 18.6 8.8 8.7 45.4

Labour Male 7.6 16.1 14.3 21.3 7.5 9.3 23.9

Female 7.9 20.2 19.2 18.8 7.1 7.1 19.7

Liberal Democrat Male 0.8 13.7 19.4 15.3 9.7 8.9 32.3

Female 4.3 9.4 26.5 6.0 6.0 9.4 38.5

Other party Male 3.1 14.4 11.3 17.5 11.3 16.5 25.8

Female 5.2 14.6 15.6 16.7 11.5 8.3 28.1

None Male 7.5 22.1 20.6 17.1 11.1 6.0 15.6

35

Female 8.5 22.5 20.6 21.8 7.3 6.3 13.0

Green Party Male 6.5 32.3 16.1 29.0 6.5 3.2 6.5

Female 6.2 18.8 25.0 20.8 6.2 10.4 12.5

The tables gives the relative age breakdown for each gender/political affiliation combination (ie

row percentages).

5.4 Grouped summary statistics for continuous variables

A common requirement in survey analysis consist in being able to compare descriptive statistics

across subgroups of the data. There are different ways to do this in R. We demonstrate below

the most straightforward one, which is obtained by using some of the functions available in the

dplyr package.

bsa%>%group_by(PartyId2)%>%summarise(

mdscore=median(libauth,na.rm=T),

sdscore=sd(libauth,na.rm=T))

A tibble: 7 x 3

PartyId2 mdscore sdscore

<fct> <dbl> <dbl>

1 Conservative 3.67 0.587

2 Labour 3.33 0.774

3 Liberal Democrat 3.17 0.726

4 Other party 3.67 0.739

5 None 3.67 0.584

6 Green Party 2.83 0.872

7 <NA> 3.67 0.564

The above command produces a table of summary values (median and standard deviations)

of the Liberal vs authoritarian scale. We can see from the first one that Green party voters

are the most liberal, followed by Labour, whereas non voters and Conservatives are the most

authoritarian. Liberal Democrats are the most cohesive group (ie with the smallest standard

deviation).

bsa%>%group_by(Rsex,PartyId2)%>%summarise(

mnscore=sd(libauth,na.rm=T) ,mdscore=median(libauth,na.rm=T))

A tibble: 14 x 4

Groups: Rsex [2]

Rsex PartyId2 mnscore mdscore

<fct> <fct> <dbl> <dbl>

1 Male Conservative 0.607 3.67

2 Male Labour 0.765 3.33

3 Male Liberal Democrat 0.766 3.17

4 Male Other party 0.703 3.83

5 Male None 0.616 3.67

36

6 Male Green Party 1.04 2.67

7 Male <NA> 0.603 3.67

8 Female Conservative 0.565 3.67

9 Female Labour 0.781 3.33

10 Female Liberal Democrat 0.688 3.17

11 Female Other party 0.773 3.67

12 Female None 0.565 3.67

13 Female Green Party 0.744 3

14 Female <NA> 0.540 3.67

When further broken down by gender, we can see that overall the same trends remain valid, with

some nuances: male Green supporters are markedly more liberal than their female counterpart,

the opposite being true among Conservative supporters.

Instead of tables of summary statistics, we may want to have summary statistics computed

as variables that will be added to the current dataset for each corresponding gender/political

affiliation group. This is straightforward to do with dplyr, we just need to use the mutate()

command.

bsa<-

bsa%>%group_by(Rsex,PartyId2)%>%mutate(

msscore=sd(libauth,na.rm=T) ,mdscore=median(libauth,na.rm=T))

However, we also need to add the newly created variables into the existing bsa dataset, which

the first line of the syntax above does. We can check that the variables have been created and

that the correct values have been allocated to each sex/affiliation category.

names(bsa)

[1] "Sserial" "Rsex" "RAgeCat" "Married"

[5] "ChildHh" "HEdQual3" "eq_inc_quintiles" "RClassGp"

[9] "CCBELIEV" "carallow" "carreduc" "carnod2"

[13] "cartaxhi" "carenvdc" "plnenvt" "plnuppri"

[17] "Politics" "Voted" "actchar" "actpol"

[21] "govnosa2" "PartyId2" "leftrigh" "libauth"

[25] "WtFactor" "msscore" "mdscore"

bsa[4:8,c("Rsex","PartyId2","mdscore")]

A tibble: 5 x 3

Groups: Rsex, PartyId2 [4]

Rsex PartyId2 mdscore

<fct> <fct> <dbl>

1 Female Labour 3.33

2 Male Liberal Democrat 3.17

3 Female <NA> 3.67

4 Male Liberal Democrat 3.17

5 Female Green Party 3

37

6 Producing weighted estimates

Most users of social surveys are interested at some point in inferring nationally representative

estimates and/or compensate for bias involved in the sampling process when conducting analy-

ses: sampling and non-response bias. These are often tackled with sampling weights, which

are meant to correct estimates for the under/over representation of certain groups in the sample

and adjusts standard errors accordingly.

However, robust inference usually relies not just on weighting estimates but also on factoring in

the survey design when conducting analyses – which can be done with the survey package in R,

but is a topic that goes beyond the present guide. At the same time for users who are concerned

with reducing bias rather than producing publication-quality estimates, it may be useful to be

aware how common R commands and operations can be used with weights.

Some of the most common ones are mentioned below:

Central tendency and dispersion (continuous variables)

The stats packages which comes with the installation of Base R includes weighted.mean() which,

as indicated by its name, computes weighted estimates of the mean of a variable when weights

are provided. However the Hmisc package includes a more comprehensive set of functions that

can be used when weighting estimates. The code below provides an illustration of weighted

means, variance and median of the left-right score used before, each time comparing it with the

unweighted estimate:

Mean

c(mean(bsa$leftrigh,na.rm=T),wtd.mean(bsa$leftrigh,bsa$WtFactor))

[1] 2.519911 2.521589

Variance

c(var(bsa$leftrigh,na.rm=T),wtd.var(bsa$leftrigh,bsa$WtFactor))

[1] 0.6166894 0.6195378

Median and quartiles

c(quantile(bsa$leftrigh,na.rm=T,probs=c(.25,.5,.75)),

wtd.quantile(bsa$leftrigh,bsa$WtFactor,probs=c(.25,.5,.75)))

25% 50% 75% 25% 50% 75%

2.0 2.4 3.0 2.0 2.4 3.0

The above functions can be used in conjunction with group_by() and summarise() in order to

compute weighted estimates of continuous variables by groups of categorical variables:

38

bsa%>%

filter(!is.na(RAgeCat))%>%group_by(RAgeCat)%>%

summarise(Mean=wtd.mean(leftrigh,WtFactor),

Var=wtd.var(leftrigh,WtFactor),

Median=wtd.quantile(leftrigh,WtFactor,probs=c(.5)))

A tibble: 7 x 4

RAgeCat Mean Var Median

<fct> <dbl> <dbl> <dbl>

1 18-24 2.49 0.556 2.4

2 25-34 2.56 0.577 2.6

3 35-44 2.52 0.615 2.4

4 45-54 2.53 0.671 2.6

5 55-59 2.54 0.653 2.4

6 60-64 2.46 0.685 2.4

7 65+ 2.52 0.613 2.4

6.1 Frequencies and contingency tables

Neither ftable() or table() used above allow for using weights. And although the Hmisc packages

includes the wtd.table() function for single frequency tables, we recommend using xtabs() as

previously, as it it more versatile:

Unweighted vs weighted frequency tables

cbind(Unweighted=round(100*prop.table(xtabs(~plnenvt,bsa)),1),

Weighted=round(100*prop.table(xtabs(WtFactor~plnenvt,bsa)),1)

)

Unweighted Weighted

agree strongly 4.6 4.8

agree 16.0 15.9

neither agree nor disagree 33.2 33.2

disagree 36.3 37.0

disagree strongly 10.0 9.0

Weights are passed to xtabs() by specifying their name on the left hand side of the equation (or

the tilde ~)

Obtaining weighted contingency tables follow the same logic:

Unweighted vs weighted contingency tables

cbind(round(100*prop.table(xtabs(~plnenvt+Rsex,bsa),1),1),

round(100*prop.table(xtabs(WtFactor~plnenvt+Rsex,bsa),1),1)

)

39

Male Female Male Female

agree strongly 50.0 50.0 46.1 53.9

agree 47.2 52.8 53.5 46.5

neither agree nor disagree 40.8 59.2 43.6 56.4

disagree 47.9 52.1 52.7 47.3

disagree strongly 42.3 57.7 41.5 58.5

6.2 Robust inference

The weighting procedures described above could be described as ‘quick and dirty’ in that they

mostly compute point estimates – ie a single value – and do not provide a reliable idea of their

precision. Computing the precision of survey data estimates – usually via their standard error

– usually requires more than just adding weights to a command. Information about the survey

design, its primary sampling units, strata and clusters is requires so that robust standard errors,

statistical tests and/or confidence interval are computed.

The Survey package was designed in order to deal with this set of issues. It provides functions

for integrating survey design into R as well as computing common estimates. We describe

below the most important features. In order to use survey fonctions consist one first needs to

create a svydesign object, in essence a version of the data that incorporates the sample design

information available, then to compute the estimate using the svydesign object.

An common issue with survey datasets available in the UK is that sampling information is often

only available in secure lab version of the data, restricting its access to authorised users. Although

it is sometimes possible to use available variables to account for aspects of the sample design –

region as a strata in the case of stratified samples – in most cases users are left with computing

standard errors without sample design information, which amounts to assuming that the sample

was drawn purely at random. Even if this is the case however, using the survey package is

recommended, as it provides a coherent framework for computing survey parameters.

library(survey) ### Loading the package in memory

bsa.design<-svydesign(ids =~1,weights=~WtFactor,data=bsa)

The code above simply declares the survey design by creating the bsa.design object (the name

is arbitrary). The ids= parameter is where primary sampling units are declared, as well as any

clustering information as a formula ie ~PSU+cluster2id.... When PSU information is unavailable

ids is given the value 1 or 0. A strata= and fpc= are available in order to declare the sampling

strata and the variable used for finite population correction. None of these are available in the

bsa dataset, and estimation commands will therefore rely on the assumption of simple random

sampling.

We can now compute estimates similar estimates as in the previous sections. The code below

provides the mean of the left vs right political orientation indicator, as well as its 95% confidence

interval:

svymean(~leftrigh,bsa.design,na.rm = T)### Computes the mean and its standard error...

mean SE

leftrigh 2.5216 0.0155

40

confint(svymean(~leftrigh,bsa.design,na.rm = T)) ### ... and confidence interval

2.5 % 97.5 %

leftrigh 2.491277 2.551902

And now for the median:

svyquantile(~leftrigh,bsa.design,quantiles=.5,na.rm = T)

$leftrigh

quantile ci.2.5 ci.97.5 se

0.5 2.4 2.4 2.6 0.05100208

attr(,"hasci")

[1] TRUE

attr(,"class")

[1] "newsvyquantile"

Frequency and contingency tables are computed using svytable(), which follows the same

syntax as xtabs()

A frequency table...

round(100*

prop.table(

svytable(~RAgeCat,bsa.design)

),1)

RAgeCat

18-24 25-34 35-44 45-54 55-59 60-64 65+

11.2 17.2 16.1 17.9 7.9 6.8 22.8

And a two-way contingency table:

round(100*

prop.table(

svytable(~RAgeCat+Rsex,bsa.design)

,1),1)

Rsex

RAgeCat Male Female

18-24 51.1 48.9

25-34 50.2 49.8

35-44 49.7 50.3

45-54 49.3 50.7

55-59 48.8 51.2

60-64 49.0 51.0

65+ 45.4 54.6

41

7 Graphs and plots

There are two main ways to produce graphs in R: either by using the straightforward but rather

basic plotting commands from the Base package, or the more complex and nicer looking functions

from the ggplot package.

7.1 Distributional graphs for continuous variables

Graphs such as histograms or box plots are a convenient way to gain a quick overview of the

distribution of a variable and are easy to produce. Go back to the BSA data, we can plot the

distribution of left-right political orientations scores with the hist() command.

hist(bsa$leftrigh,freq=FALSE)

Histogram of bsa$leftrigh

bsa$leftrigh

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

The graphs appear visible in the ‘Plot’ tab on the right hand side of the R Studio window. It shows

us that political orientations are slightly skewed towards the left. The freq=FALSE option requires

the y-axis to be expressed in terms of proportions rather than frequencies.

Titles and labels can easily be added:

hist(bsa$leftrigh,

freq=FALSE,

main="Histogram of political orientations",

ylab="Proportions",

xlab="Left-right political orientations score")

42

Histogram of political orientations

Left−right political orientations score

P
ro

po
rt

io
ns

1 2 3 4 5

0.
0

0.
2

0.
4

Note that main, ylab and xlab can be used with any Base R plot commands.

We can also produce a box and whisker plot of the same variable:

boxplot(bsa$leftrigh,

main="Box and whisker plot of political orientations",

ylab="Left-right political orientations score"

)

1
2

3
4

5

Box and whisker plot of political orientations

Le
ft−

rig
ht

 p
ol

iti
ca

l o
rie

nt
at

io
ns

 s
co

re

The generic plot() command produces one or two-way scatterplots:

plot(bsa$leftrigh) ### One way scatter plot of left-right political orientations score

43

0 1000 2000 3000 4000

1
2

3
4

5

Index

bs
a$

le
ftr

ig
h

plot(bsa$leftrigh,bsa$libauth)

1 2 3 4 5

2
3

4
5

bsa$leftrigh

bs
a$

lib
au

th

The second graph shows us that there is little association between the two variables. However,

slightly fewer respondents simultaneously score high on the authoritarianism and left vs right

scales.

7.2 Plotting categorical variables

The generic plot() function provides a quick way to produce bar plots of categorical data. For

example, we can examine the distribution of political party affiliations (Politics variable) which is

a factor (ie categorical) variable. Some preliminary abbreviating of the factor levels are required

in order for them to be displayed properly.

levels(bsa$PartyId2) ## The third and fourth factor levels are a bit long

[1] "Conservative" "Labour" "Liberal Democrat" "Other party"

[5] "None" "Green Party"

44

levels(bsa$PartyId2)<-c("Con","Lab","Lib Dems","Other","None", "Greens")

plot(bsa$PartyId2)

Con Lab Lib Dems None Greens

0
40

0
80

0
14

00

More advanced plots require the barplot() function, which can be used in conjunction with table().

Whereas table() creates the data that will be plotted, barplot() does the actual plotting. For

instance, we can produce the same bar plot, but this time with percentages, by creating a

frequency table as we did above in Section 5.2, then plot it.

party.tab<-round(100*prop.table(

table(bsa$PartyId2)

),

1)

party.tab

Con Lab Lib Dems Other None Greens

33.5 39.2 6.4 5.1 13.7 2.1

barplot(party.tab,

main="Political party affiliation",

ylab="Percent")

Con Lab Lib Dems None Greens

Political party affiliation

P
er

ce
nt

0
10

20
30

45

We can go further and create plots for two-way contingency tables of party affiliation by gender.

This time we will do it in a single command:

barplot(

round(100*prop.table(

table(bsa$Rsex,bsa$PartyId2),

2), ## Column % (here, gender)

1), ## Rounded to 1 decimal

beside = T, ## Side-by-side bars

main="Political party affiliation by gender",

ylab="Percent")

Con Lab Lib Dems None Greens

Political party affiliation by gender

P
er

ce
nt

0
20

40
60

7.3 More advanced plots

Social science research often requires more advanced plots in order to conduct more complex

analyses, for instance comparing the mean or median value of a continuous outcome across

two or more categorical variables. The ggplot package provides one of the most advanced set

of tools for plotting data currently available. A few examples are provided below.

Political party affiliation by highest qualification and gender We would like to look at

how differences in political party affiliations vary by gender and whether respondents have a

degree-level education.

Let us first prepare the data: we need to create the table of result, the proportion of degree

vs non degree holders by gender and political party. This is a three-way contingency table,

that we can obtain with ftable() as shown in Section 5.2, combined with prop.table() for the

computation of proportions and round(). As they are more straightforward to handle in ggplot,

we convert the table object created by ftable into a data frame. Although we can specify titles

and axis labels in the plotting command, it is preferable to keep things simple here and have

them already in the the data.

Rather than using the full range of educational achievements recorded in HEdQual3, we would

like instead to have a dichotomic variable between degree holders and non degree holders.

Adding it directly in the ftable command as a boolean expression return a dichotomic variable:

“TRUE” for Degree educated respondents, and “FALSE” for everyone else. We just need to

46

change the levels of this factor variable to make them more intelligible. Finally we change the

variable names in our data frame.

pa<-round(100*prop.table((ftable(bsa$PartyId2,bsa$Rsex,(bsa$HEdQual3=="Degree"))),1),1)

pa<-data.frame(pa)

levels(pa$Var3)<-c("Below","Degree")

names(pa)<-c("Affiliation","Gender","Education","Percent")

pa

Affiliation Gender Education Percent

1 Con Male Below 72.7

2 Lab Male Below 70.1

3 Lib Dems Male Below 50.0

4 Other Male Below 86.5

5 None Male Below 88.8

6 Greens Male Below 43.3

7 Con Female Below 82.6

8 Lab Female Below 67.3

9 Lib Dems Female Below 54.4

10 Other Female Below 74.7

11 None Female Below 83.9

12 Greens Female Below 48.9

13 Con Male Degree 27.3

14 Lab Male Degree 29.9

15 Lib Dems Male Degree 50.0

16 Other Male Degree 13.5

17 None Male Degree 11.2

18 Greens Male Degree 56.7

19 Con Female Degree 17.4

20 Lab Female Degree 32.7

21 Lib Dems Female Degree 45.6

22 Other Female Degree 25.3

23 None Female Degree 16.1

24 Greens Female Degree 51.1

We are now ready to plot the data. the ggplot() commands usually works as a succession of

layers or options that are added to an initial plot specifications. Each extra layer is added after a

+ sign. In the example below, we specify the data and the aesthetic (ie the main parameters of

the plot) with the first command: the x and y variables , and the first grouping variable, education).

geom_bar() stipulates the bar plot, with the ṕosition=“dodge” for the bars to be located side by

side (position=“stack”would have them on top of each other). Finally, facet_wrap() splits the plot

by gender.

ggplot(data=pa,aes(y=Percent,x=Affiliation,fill=Education))+

geom_bar(position="dodge",stat="identity")+

facet_wrap(~Gender)+

theme_minimal()+ ### Theme for visualisation

scale_fill_manual(values=c("#702082", "#008755"))+ ### Custom colours (optional)

theme(legend.position = "bottom")

47

Male Female

Con Lab Lib DemsOther None Greens Con Lab Lib DemsOther None Greens

0

25

50

75

Affiliation

P
er

ce
nt

Education Below Degree

48

8 Statistical testing

This section covers how to implement common statistical tests in R with survey data. A working

knowledge of these tests and their theoretical assumptions is assumed.

8.1 Differences between means

Two common ways of conducting statistical testing with means in samples consist in testing

whether they are significantly different from 0 (one sample t-test), or whether they differ between

two groups (two samples t test). In the latter case, one can further distinguish between indepen-

dent samples (where means come from different groups), or paired samples (when the same

measure is taken at several point in time). Given that it is the most widely used in social science,

we will only cover the former here.

Several R packages provide functions for conducting t tests. We will be using t.test(), part

the stats package. Suppose we would like to test whether libauth significantly differs between

men and women. A two sided test is the default (with H_0 that there is no differences between

groups), and H_1 that the group means do indeed differ. The test is specified with a formula with

on the left hand side the quantity to be tested and on the right hand side the grouping variable.

One sided tests can be conducted by specifying that the alternative hypothesis (H_1) is either

greater or less. t.test() assumes that by default the variances are unequal. this can be

changed with the var.equal=T option.

Testing for significant differences in liberal vs authoritarian score

t.test(libauth~Rsex,data=bsa)

Welch Two Sample t-test

data: libauth by Rsex

t = 1.1622, df = 3011.9, p-value = 0.2452

alternative hypothesis: true difference in means between group Male and group Female is not equal to 0

95 percent confidence interval:

-0.02035161 0.07959393

sample estimates:

mean in group Male mean in group Female

3.527793 3.498172

No significant differences (ie the difference in libauth betweenmen and women is not significantly

different from zero)

49

Testing for whether men have a lower (ie more left-wing) score

t.test(leftrigh~Rsex,data=bsa, alternative="less")

Welch Two Sample t-test

data: leftrigh by Rsex

t = -2.0687, df = 2858, p-value = 0.01933

alternative hypothesis: true difference in means between group Male and group Female is less than 0

95 percent confidence interval:

-Inf -0.01197607

sample estimates:

mean in group Male mean in group Female

2.487564 2.546087

Men have a significantly lower score on the scale (at the .05 threshold) and are therefore on

average leaning more to the left than women.

8.2 Differences in variance

Another common significance test in social science is the variance test which consists of testing

whether the variances of the same variable across two groups are equal. This is usually achieved

by testing whether the ratio of the variance between the two groups is significantly different from

zero. With the BSAdata, this amounts to testing whether men and women are more homogenous

with regard to their political views.

The syntax for the variance test var.test() also included in stats is almost identical to that of

t.test()

Testing for gender differences in liberal vs authoritarian score

var.test(libauth~Rsex,data=bsa)

F test to compare two variances

data: libauth by Rsex

F = 1.0892, num df = 1434, denom df = 1777, p-value = 0.0879

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.9873927 1.2022204

sample estimates:

ratio of variances

1.089239

Significant differences in the variance between men and women, but only at the .1 threshold.

50

Testing for whether men have a lower (ie more left-wing) score

var.test(leftrigh~Rsex,data=bsa,alternative="greater")

F test to compare two variances

data: leftrigh by Rsex

F = 1.3218, num df = 1433, denom df = 1771, p-value = 1.263e-08

alternative hypothesis: true ratio of variances is greater than 1

95 percent confidence interval:

1.217167 Inf

sample estimates:

ratio of variances

1.3218

The variance of left-right political leaning is larger among men than women, in other words there

are more divergence between men than between women.

8.3 Significance of measures of association

Between continuous variables

Another type of common statistical test in social science is about examining whether a coefficient

of correlation is significantly different from 0 (alternative hypothesis).

cor.test(bsa$leftrigh, bsa$libauth, use='complete.obs')

Pearson's product-moment correlation

data: bsa$leftrigh and bsa$libauth

t = 0.54472, df = 3202, p-value = 0.586

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.02501074 0.04423951

sample estimates:

cor

0.009625928

As we could have suspected the coefficient of correlation between the two scales is so small

that it cannot be said to be significantly different from zero.

Between categorical variables

The chi-square test of independence is a very common test of association between categorical

variables. It consists in examining whether the association between two variables is likely to be

due to chance or not, in other words whether the variability observed in a contingency table is

significantly different from what would be expected were it due to chance.

51

We will be using chisq.test(), also from the stats package. By contrast with the test of

correlation, the chisq.test() needs to be applied to contingency tables that have already been

computed. Let us go back to an earlier example, and attempt to test whether the gender

differences in political affiliations are due to chance or not.

chisq.test(xtabs(~PartyId2 +Rsex,bsa))

Pearson's Chi-squared test

data: xtabs(~PartyId2 + Rsex, bsa)

X-squared = 27.191, df = 5, p-value = 5.236e-05

As the R output shows, there are highly significant gender differences in political affiliations

(p<.001).

52

9 Regression analysis

The glm() command from the R base package is used for fitting linear and non-linear models.

These include logistic regression, and more generally models falling under the Generalized

Linear Model framework.

In this section, we will use it to investigate the association between the level of education HEdQual3

and Voted, whether someone voted or not. Let’s first briefly explore the variables using the

class() and table() commands from the previous chapters:

class(bsa$Voted)

[1] "factor"

table(bsa$Voted)

Yes No

2205 776

and

class(bsa$HEdQual3)

[1] "factor"

table(bsa$HEdQual3)

Degree Higher educ below degree/A level

1050 1086

O level or equiv/CSE No qualification

1026 747

It is a good idea to make sure that categorical variables are stored as factors. This is not absolutely

necessary, but gives greater flexibility, for instance when having to change the reference category

on the go.

For greater readability we can also shorten the levels of HEdQual3 using the level() function:

levels(bsa$HEdQual3) ### The original level names are a bit verbose...

[1] "Degree" "Higher educ below degree/A level"

[3] "O level or equiv/CSE" "No qualification"

53

... Fortunately we can shorten them easily

levels(bsa$HEdQual3) <- c("Degree","A level and above","GCSE or equiv","No Qual")

table(bsa$HEdQual3)

Degree A level and above GCSE or equiv No Qual

1050 1086 1026 747

What about the levels for our dependent variable? By default, the first level of a factor will be

used as the reference category. This can be also checked with the contrasts(). In this case, 1

is associated with ‘No’, so the model will be predicting the probability of NOT voting. If the 1 was

associated with ‘Yes’ then the model will be predicting the probability of voting.

levels(bsa$Voted) #Note that Yes comes before No

[1] "Yes" "No"

contrasts(bsa$Voted)

No

Yes 0

No 1

As we are interested in the latter we need to change the reference category using the relevel()

function. We can also create a new variable named Voted2 so as to keep a copy of the original

variable intact.

Reverse the order

bsa$Voted2 <- relevel(bsa$Voted, ref = "No")

#Check the contrasts

contrasts(bsa$Voted2)

Yes

No 0

Yes 1

Since the outcome variable (Voted or Voted2) has a binomial distribution, we need to specify to

the glm() function that we will be fitting a logistic regression model. We will do this by setting the

argument ‘family’ to ‘binomial’ and the link function to ‘logit’. We could also have used ‘probit’

instead as a link function. The code below runs the model and stores the result into an object

called fit1:

fit1 <- glm(Voted2 ~ HEdQual3, data=bsa, family=binomial(link=logit))

summary(fit1)

54

Call:

glm(formula = Voted2 ~ HEdQual3, family = binomial(link = logit),

data = bsa)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.49561 0.09188 16.278 < 2e-16 ***

HEdQual3A level and above -0.21342 0.12514 -1.706 0.0881 .

HEdQual3GCSE or equiv -0.64062 0.12191 -5.255 1.48e-07 ***

HEdQual3No Qual -0.83672 0.12769 -6.553 5.65e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3297.6 on 2916 degrees of freedom

Residual deviance: 3240.4 on 2913 degrees of freedom

(1071 observations deleted due to missingness)

AIC: 3248.4

Number of Fisher Scoring iterations: 4

To run a model controlling for gender ‘Rsex’ and age ‘RAgeCat’, one simply needs to add them

on the right hand side of the formula, separated with a plus (+) sign.

fit2 <- glm(Voted2 ~ HEdQual3 + Rsex + RAgeCat, data=bsa, family=binomial(link=logit))

summary(fit2)

Call:

glm(formula = Voted2 ~ HEdQual3 + Rsex + RAgeCat, family = binomial(link = logit),

data = bsa)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.11251 0.20044 5.550 2.85e-08 ***

HEdQual3A level and above -0.38676 0.13215 -2.927 0.003427 **

HEdQual3GCSE or equiv -0.99023 0.13109 -7.554 4.23e-14 ***

HEdQual3No Qual -1.90625 0.15687 -12.152 < 2e-16 ***

RsexFemale -0.15708 0.09218 -1.704 0.088363 .

RAgeCat25-34 -0.24604 0.19670 -1.251 0.210996

RAgeCat35-44 0.20668 0.19808 1.043 0.296764

RAgeCat45-54 0.85685 0.20000 4.284 1.83e-05 ***

RAgeCat55-59 0.84062 0.23225 3.619 0.000295 ***

RAgeCat60-64 1.60276 0.25272 6.342 2.27e-10 ***

RAgeCat65+ 2.16408 0.21450 10.089 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

55

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3293.1 on 2912 degrees of freedom

Residual deviance: 2922.5 on 2902 degrees of freedom

(1075 observations deleted due to missingness)

AIC: 2944.5

Number of Fisher Scoring iterations: 4

Model interpretation

Summary() provide a broad overview of the model output, not dissimilar to other statistical software.

We can also examine the content of fit1 and fit2 more in detail and requests a specific element,

for example:

ls(fit1)

[1] "aic" "boundary" "call"

[4] "coefficients" "contrasts" "control"

[7] "converged" "data" "deviance"

[10] "df.null" "df.residual" "effects"

[13] "family" "fitted.values" "formula"

[16] "iter" "linear.predictors" "method"

[19] "model" "na.action" "null.deviance"

[22] "offset" "prior.weights" "qr"

[25] "R" "rank" "residuals"

[28] "terms" "weights" "xlevels"

[31] "y"

round(fit1$coefficients,2)

(Intercept) HEdQual3A level and above HEdQual3GCSE or equiv

1.50 -0.21 -0.64

HEdQual3No Qual

-0.84

The coef() function will give the same output:

round(coef(fit1),2)

(Intercept) HEdQual3A level and above HEdQual3GCSE or equiv

1.50 -0.21 -0.64

HEdQual3No Qual

-0.84

It is beyond the remit of this guide to describe the full output of glm(). Please refer to the package

documentation for more detailed explanations.

Raw logistic regression coefficients measure the effect of variables on the probability of the

outcome such as log(betaX)=P(y). It is common practice to convert these into odd ratios by

exponentiating them, such as that betaX=exp(P(y)). The following code does this in R:

56

cbind(

exp(coef(fit2)),exp(confint(fit2))

)

2.5 % 97.5 %

(Intercept) 3.0419750 2.0618311 4.5276614

HEdQual3A level and above 0.6792550 0.5237628 0.8795335

HEdQual3GCSE or equiv 0.3714919 0.2868078 0.4796010

HEdQual3No Qual 0.1486366 0.1089442 0.2015607

RsexFemale 0.8546343 0.7130680 1.0235515

RAgeCat25-34 0.7818917 0.5300310 1.1469983

RAgeCat35-44 1.2295882 0.8316608 1.8095457

RAgeCat45-54 2.3557310 1.5886305 3.4827615

RAgeCat55-59 2.3178122 1.4718049 3.6621685

RAgeCat60-64 4.9667132 3.0428167 8.2090111

RAgeCat65+ 8.7065916 5.7183039 13.2696921

Using the coef() and confint() functions, the code above respectively extracts the coefficients

and associated 95% confidence intervals from fit2 then collate them using cbind().

** Plotting the coefficients ** –> We can visualise the odd ratios and their confidence intervals

using the plot.model() function from the ‘sjPlot’ package. The ’sjPlot’ package needs to be

installed and loaded

install.packages('sjPlot')

library(sjPlot)

set_theme(base = theme_minimal()) ### Default sets of options

plot_model(fit2,

colors = c("#702082", "#008755") ### Added for better accessibility

)

RAgeCat [65+]

RAgeCat [60−64]

RAgeCat [55−59]

RAgeCat [45−54]

RAgeCat [35−44]

RAgeCat [25−34]

Rsex [Female]

HEdQual3 [No Qual]

HEdQual3 [GCSE or equiv]

HEdQual3 [A level and above]

0.01 0.1 1 10 100
Odds Ratios

Voted 2

57

Assessing model fit The Akaike Information Criterion (AIC) is a measure of relative fit for

maximum likelihood fitted models. It is used to compare the improvement in how several models

fit some data relative to each other, allowing for the different number of parameters or degrees

of freedom. The smaller the AIC, the better the fit. In order for the comparison to be valid, we

need to ensure that the models were run with the same number of observations each time. As it

is likely that the second model was run on a smaller sample, due to missing values for the Age

and Sex variables, we will need to re-run the first one without.

fit1 <- glm(Voted2 ~ HEdQual3, data=bsa%>%

filter(!is.na(Rsex) & !is.na(RAgeCat)), family=binomial(link=logit))

c(fit1$aic,fit2$aic)

[1] 3244.507 2944.535

We can see that the model controlling for gender and sex is a better fit to the data than the one

without controls as it has an AIC of 2944.5 against 3244.5 for fit1.

With the information about the deviance from fit1 and fit2, we can also compute the overall

significance of the model, that is whether the difference between the deviance (another likelihood-

based measure of fit) for the fitted model is significantly different from that of the empty or null

model. This is usually carried by conducting a chi square test, accounting for the differences in

the number of parameters (ie degrees of freedom) between the two models. As with other R

code, this can achieved step by step or in one go:

dev.d<-fit2$null.deviance - fit2$deviance

df.d<-fit2$df.null - fit2$df.residual

p<-1 - pchisq(dev.d, df.d)

c(dev.d,df.d,p)

[1] 370.5486 10.0000 0.0000

The Chi square test indicates that the difference in deviance of 370.5 with 10 degrees of freedom

is highly significant (P<.001)

58

10 Further information

10.1 Additional commands of interest

The following non exhaustive list provides a few examples of commands and packages that

tackle common types of analysis which might be relevant to users of large UK surveys:

• Further regression analysis: the glm() command can be used for fitting a large number

of regression including Poisson and multinomial models. The packages ‘lme4’ and ‘nlme’

are used to fit respectively linear and non linear multilevel models, also known as mixed

models.

• Complex survey data and analysis commands and functions can be found in the ‘survey’

package. It includes commands for taking into account stratified and clustered samples,

weights compute design effects and confidence intervals, etc..

• For users interested in latent variable modelling the factanal() command from the stats

package conducts factor analysis. Other resources are available in the poLCA (Latent Class

Analysis), ltm (Latent Trait modelling), sem (Structural equation modelling) packages. The

Lavaan package aslso provides a wide range of functions for structural equation modelling

including with categorical outcomes.

• Users interested in longitudinal and time series analysis will be interested in the statsand

the ‘tseries’ packages. The packages survival and eha deal with event history and survival

analysis, whereas ‘grofit’ and ‘plm’ are designed for panel data and growth analyses.

10.2 Additional online resources

There are hundreds of web sites dedicated to R that users can consult, in addition to CRAN and

the main R help list, R-Help with its searchable archives. A few of the most common ones are

listed here:

• As with other statistical packages, the UCLA website provides a good starting point for

beginners

• The University of North Texas provides useful links to R resources

• The R Bloggers website contains many posts about R - in particular useful introductory

information

• Stackexchange is not specific to R but contains many forum-type questions and answers

raised by R users

• This website presents useful basic information about graphs in R.

• The Centre for Multilevel modeling at Bristol University has several pages dedicated to R

users interested in Multilevel modeling

59

https://stats.oarc.ucla.edu/r/
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/
https://www.r-bloggers.com
https://www.r-bloggers.com/r-tutorial-series-r-beginners-guide-and-r-bloggers-updates/
https://www.r-bloggers.com/r-tutorial-series-r-beginners-guide-and-r-bloggers-updates/
https://stats.stackexchange.com/
https://www.harding.edu/fmccown/r/
https://www.bristol.ac.uk/cmm/learning/course.html

11 References

• R Core Team. (2017). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

RStudio Team. (2016).

• RStudio: Integrated Development for R. Boston, USA: RStudio, Inc. Retrieved from

http://www.rstudio.com/

• Tennekes, M. (2017) tmap: Thematic Maps. R package version 1.10. Retrieved from

https://cran.r-project.org/package=tmap

• Wickham, H., & Francois, R. (2016). dplyr: A Grammar of Data Manipulation. R package

version 0.5.0. Retrieved from https://cran.r-project.org/package=dplyr

• Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,

2009. Retrieved from https://cran.r-project.org/package=ggplot2

60

	Introduction
	What is R ?
	Using R: essential information
	Download and installation
	Installing and setting up RStudio
	Interacting with R
	Installing and loading packages
	Getting help
	Objects

	Opening datasets in R
	Essential information
	The 2017 British Social Attitudes Survey
	Understanding the dataset
	Identifying and selecting variables

	Essentials of Data Manipulation
	Creating and transforming numerical variables
	Categorical variables
	Recoding variables
	Missing Values
	Inspecting missing data
	Recoding missing values as NA (continuous variables)
	Working with missing values

	Subsetting datasets

	Descriptive statistics
	Continuous variables
	Bivariate association between continuous variables
	Categorical Variables
	One way frequency tables
	Two way or more contingency table

	Grouped summary statistics for continuous variables

	Producing weighted estimates
	Frequencies and contingency tables
	Robust inference

	Graphs and plots
	Distributional graphs for continuous variables
	Plotting categorical variables
	More advanced plots

	Statistical testing
	Differences between means
	Differences in variance
	Significance of measures of association

	Regression analysis
	Further information
	Additional commands of interest
	Additional online resources

	References

